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Bl Abstract

e SepraPor® hollow fiber tangential flow filters can be implemented in series to achieve continuous
process intensification.

e An analytical model was developed to predict filtration performance and aid in designhing best-fit
SPTFF assemblies.
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Bl Experimental Model Validation Performance Optimization

The model was initially validated using water flux experiments with samples of varying porosity ratings, effective Pressure optimization curves are necessary for increasing the filtration performance of the SPTFF
filtration areas, and fiber lumen diameters. Figures 4 and 5 show that the experimental data closely followed the assembly. Concentration polarization results in a filtration plateau after reaching an optimal TMP.
analytical model predictions for permeate flow rate and pressure drop across the sample filters. This is caused by the formation of a gel layer of more concentrated solution than the bulk fluid

due to concentration polarization. Figure 6 shows the performance of a clean water experiment,
with no concentration polarization, versus the filtration optimization of a 0.23 wt % aqueous PVP
K-90 solution.
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Figure 4. Permeate flow rate vs feed flow rate experimental data from Figure 5. Pressure drop vs feed flow rate experimental data from Figure 6. TMP optimization curves for 0.23 wt% PVP K-90
100 kDa, 1 mm lumen sample filters with varying effective filtration area 100 kDa, 1 mm lumen sample filters with varying effective filtration agueous solution and clean water at a feed flow rate of 10 mL/min
compared to the analytical model prediction. area compared to the analytical model prediction. with a 100 kDa, 1 mm lumen filter.
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